Triangles

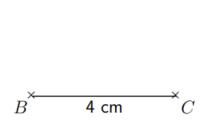
I Construire un triangle

Définition :

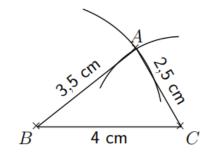
Un triangle est un polygone possédant 3 côtés.

1- A partir de 3 longueurs

On souhaite construire le triangle tel que $AB = 3.5 \ cm$, $BC = 4 \ cm$, $AC = 2.5 \ cm$



2,5 cm 2,5 cm 2,5 cm



1/ Tracer le côté le plus long. Ici, on trace le côté [BC] qui a pour longueur $4\ cm$.

2/ Tracer deux arcs de cercle :

- le premier de centre B et de rayon $3.5\ cm$
- le second de centre ${\it C}$ de rayon 2,5 ${\it cm}$

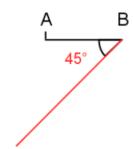
3/ Le point A est à l'intersection des deux arcs de

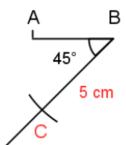
cercle.

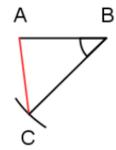
Terminer en traçant le triangle ABC.

2- A partir de 2 longueurs et 1 angle

On souhaite construire le triangle ABC tel que AB=4 cm, BC=5 cm et $\widehat{ABC}=45^{\circ}$







1/ Tracer le segment [AB] de longueur $4\ cm$

2/ Tracer la demidroite d'origine *B* qui fait un angle de 45° avec le segment [*AB*], à l'aide du rapporteur.

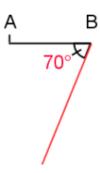
3/ Tracer un arc de cercle de centre B et de rayon 5 cm.

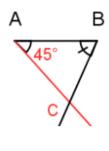
L'intersection entre la demi-droite d'origine B et l'arc de cercle donne le point C.

4/ Tracer le dernier côté pour obtenir le triangle *ABC*

3- A partir de 2 angles et 1 longueur

On souhaite construire le triangle ABC tel que AB = 5 cm, $\widehat{ABC} = 70^{\circ}$ et $\widehat{BAC} = 45^{\circ}$





1/ Tracer le segment [AB] de longueur 5 cm

2/ Tracer la demi-droite d'origine B qui fait un angle de 70° avec le segment [AB], à l'aide du rapporteur.

3/ Tracer la demi-droite d'origine A qui fait un angle de 45° avec le segment [AB], à l'aide du rapporteur. L'intersection entre les deux demi-droites donne le point C.

Application: Exercice 1

II Angles du triangle

Propriété:

La somme des angles d'un triangle est égale à 180° .

 $\underline{\mathsf{Exemple}}: \mathsf{Dans} \ \mathsf{le} \ \mathsf{triangle} \ \mathit{ABC} \ \mathsf{ci-contre}, \ \mathsf{on} \ \mathsf{connait} \ \mathsf{la} \ \mathsf{valeur} \ \mathsf{des} \ \mathsf{angles} \ \mathsf{suivants}:$

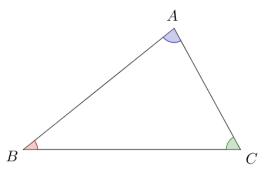
- $\widehat{ABC} = 40^{\circ}$
- $\widehat{BCA} = 60^{\circ}$

La somme de ces deux angles est égale à $40^{\circ} + 60^{\circ} = 100^{\circ}$

Or la somme des angles d'un triangle est égale à 180°,

On peut donc déterminer la valeur de l'angle $\widehat{\mathit{BAC}}$:

$$\widehat{BAC} = 180^{\circ} - 100^{\circ} = 80^{\circ}$$



Application : Exercice 2

III Triangles particuliers

Nom du triangle	Définition	Propriétés	Représentation
Triangle quelconque	Figure géométrique (polygone) ayant 3 angles, et 3 côtés.	-Les 3 <u>angles</u> ont des mesures différentes -Les 3 <u>côtés</u> ont des longueurs différentes	A C
Triangle isocèle	Triangle ayant 2 côtés égaux	-On dit qu'un triangle est isocèle en A quand les 2 <u>côtés</u> issus de A sont égaux -Un triangle isocèle a 2 <u>angles</u> égaux.	B C
Triangle rectangle	Triangle ayant un angle droit (90°)	Le côté le plus long est appelé hypoténuse. C'est le côté opposé à l'angle droit.	B C
Triangle isocèle rectangle	Triangle ayant un angle droit et 2 côtés égaux	-Les 2 côtés égaux sont toujours issus de l'angle droit. -Les 2 autres angles sont égaux et ont pour mesure 45°.	45° 45°
Triangle équilatéral	Triangle ayant ses 3 côtés égaux	-Les 3 <u>angles</u> ont la même mesure, 60°. -Les 3 <u>côtés</u> ont la même mesure.	60°

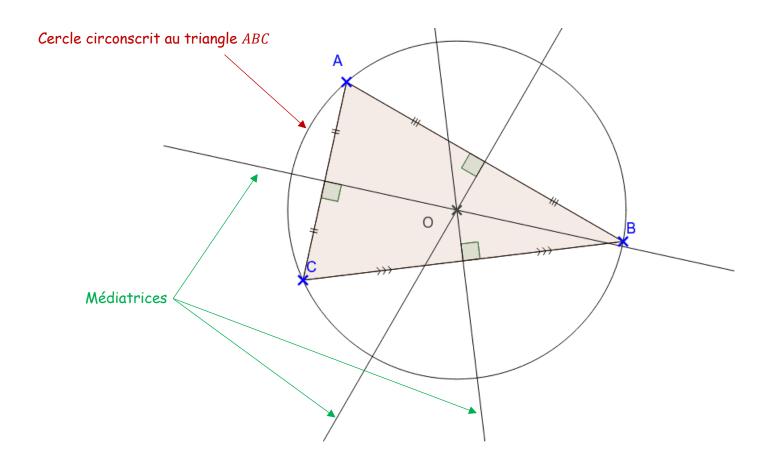
IV Cercle circonscrit à un triangle

Définition :

Le cercle circonscrit à un triangle est le cercle passant par tous les sommets de ce triangle.

Propriété:

Le centre du cercle circonscrit à un triangle est le point d'intersection des trois médiatrices de ce triangle.



Application: Exercice 3