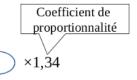
<u>Proportionnalité</u>

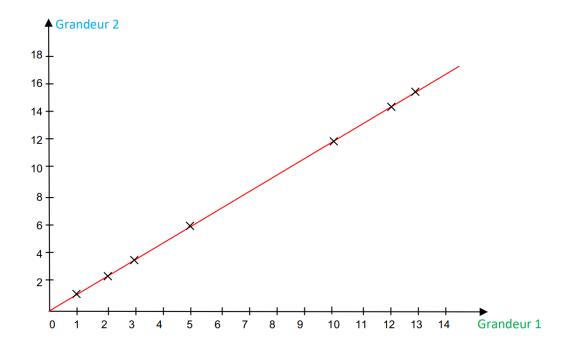

I Rappel

Définition :

Un tableau est dit « de proportionnalité » si et seulement si, il existe un coefficient de proportionnalité qui permet de passer d'une grandeur à une autre.

Exemple:

Quantité d'essence (L)	1	17	20,5	30	
Prix (€)	1,34	22,78	27,47	40,2	•


II Représentation graphique

Définition :

Une situation de proportionnalité est représentée graphiquement par des points alignés avec l'origine. Elle est représentative d'une fonction linéaire.

 $\underline{\mathsf{Exemple}}$: Le tableau de proportionnalité donne les coordonnées de chaque point à placer sur le graphique.

Grandeur 1	1	2	3	5	10	12	13
Grandeur 2	1,2	2,4	3,6	6	12	14,4	15,6

Application: Exercice 1

III Pourcentages

1- Proportions

Définition:

Un pourcentage exprime une proportion où la quantité totale est ramenée à 100. Cela permet de se représenter plus facilement cette proportion.

 $\underline{\text{Exemple}}$: On sait que la tribune visiteurs du Stade Pierre Mauroy représente 2,6% du nombre total de places qui est de $50\,157$ places.

On cherche les 2,6% de 50 157:

$$\frac{2.6}{100} \times 50\ 157 = 1\ 307$$

La tribune visiteurs a une capacité de 1 307 places.

2- Taux d'évolution

Propriétés:

Augmenter un nombre de p % revient à multiplier ce nombre par $1 + \frac{p}{100}$.

Diminuer un nombre de p % revient à multiplier ce nombre par $1 - \frac{p}{100}$.

Exemple: Pendant les soldes, un blouson à 80 € a une remise de 40 %.

Le coefficient multiplicateur est $1 - \frac{40}{100} = 1 - 0.4 = 0.6$

Le nouveau prix du blouson est donc de $80 \times 0.6 = 48 \in$

Application: Exercice 2