Probabilités

I Vocabulaire

Définition:

Une expérience <u>aléatoire</u> est une expérience dont les résultats sont connus sans que l'on puisse les prévoir à l'avance.

Une issue est un résultat possible d'une expérience aléatoire.

L'<u>univers</u> associé à une expérience aléatoire est l'ensemble des résultats possibles. Il est généralement noté Ω .

Exemple: L'expérience aléatoire consistant à lancer un dé non truqué à six faces possède six issues : 1, 2, 3, 4, 5 et 6. On note $\Omega = \{1; 2; 3; 4; 5; 6\}$

Définition :

Un <u>évènement</u> est un ensemble d'issues (résultats possibles) d'une expérience aléatoire.

<u>Exemple</u>: En lançant un dé non truqué à six faces, « Obtenir un chiffre pair » est un évènement regroupant 2, 4, 6 (les trois issues possibles).

Définition :

L'évènement contraire d'un évènement A est noté \overline{A} (se lit A barre). C'est l'évènement qui rassemble toutes les issues qui ne composent pas l'évènement A.

Exemple : L'évènement contraire au précédent est « Obtenir un chiffre impair »

II Notion de probabilité

Définition:

La probabilité d'un évènement est « la chance » qu'il a de se produire.

La **probabilité** d'un évènement est un nombre toujours compris entre 0 et 1.

Formule:

La probabilité d'un évènement A est $P(A) = \frac{nombre d'issues possibles pour réaliser l'évènement A}{nombre total d'issues de l'expérience aléatoire}$

Exemple : « Obtenir un chiffre inférieur ou égal à 2 » est un évènement regroupant 1 et 2 (les deux issues possibles). La probabilité de cet évènement est donc égale à $p = \frac{2}{6} = \frac{1}{2}$

Propriété:

La probabilité de l'évènement contraire à un évènement A est :

$$P(\bar{A}) = 1 - P(A)$$

<u>Exemple</u>: L'évènement contraire au précédent est « Obtenir un chiffre strictement supérieur à 2 ». La probabilité de cet évènement contraire est donc égale à $P(\bar{A}) = 1 - \frac{2}{6} = \frac{4}{6} = \frac{2}{3}$

Remarques:

- Un évènement dont la probabilité est égale à 0 est appelé évènement impossible.
- Un évènement dont la probabilité est égale à 1 est appelé évènement certain.
- On parle d'équiprobabilité quand les issues ont toutes autant de chance de se produire.

Application: Exercice 1

III Expérience aléatoire à deux épreuves

Pour étudier une expérience aléatoire à deux épreuves, on crée un tableau à double entrée pour regrouper les résultats possibles.

Exemple:

Clélia a dans son armoire 3 shorts bleus, 1 short rouge et 2 shorts verts.

Elle a également 2 tee-shirts bleus et 3 tee-shirts rouges.

Elle prend au hasard un short et un tee-shirt dans son armoire.

Quelle est la probabilité qu'elle soit habillée tout en bleu?

Tee-shirt Short	Bleu (B)	Bleu (B)	Rouge (R)	Rouge (R)	Rouge (R)
Bleu (B)	(B; B)	(B; B)	(B; R)	(B; R)	(B; R)
Bleu (B)	(B; B)	(B; B)	(B; R)	(B; R)	(B; R)
Bleu (B)	(B; B)	(B; B)	(B; R)	(B; R)	(B; R)
Rouge (R)	(R; B)	(R; B)	(R; R)	(R; R)	(R; R)
Vert (V)	(V; B)	(V; B)	(V;R)	(V; R)	(V;R)
Vert (V)	(V;B)	(V; B)	(V;R)	(V;R)	(V;R)

Le tableau regroupe en tout 30 issues. 6 donne la possibilité à Clélia d'être habillée tout en bleu.

La probabilité qu'elle soit habillée tout en bleu est donc $P(bleu) = \frac{6}{30} = \frac{1}{5}$

Application: Exercice 2