Espace

Dans l'ensemble de ce chapitre, on utilisera les abréviations suivantes :

• Pour le carré : $c = c\hat{0}t\hat{e}$

• Pour le rectangle : L = Longueur et l = largeur

• Pour le triangle : b = base et h = hauteur

• Pour le cercle : r = rayon, d = diamètre et π est le nombre pi

I Périmètre (Rappels)

Définition:

Le périmètre d'une figure est la longueur que l'on parcourt lorsqu'on fait le tour de la figure.

<u>Méthode</u>: Pour calculer le périmètre d'une figure quelconque, il suffit donc d'additionner les longueurs des côtés de cette figure.

Pour certaines figures particulières, il faut connaître les formules suivantes :

Rectangle	Carré	Losange	Cercle
	# #		r
$P = L + L + l + l$ ou $P = 2 \times (L + l)$	$P = c + c + c + c$ ou $P = 4 \times c$	$P = c + c + c + c$ ou $P = 4 \times c$	$P = \pi \times d$ ou $P = 2 \times \pi \times r$

Conversion de longueur :

km	hm	dam	m	dm	cm	mm
			1	0	0	
0,	0	1	0			

Exemples: 1 m = 100 cm / 10 m = 0.01 km / 23.7 cm = 0.237 m

 $\underline{\text{Remarque}}$: Pour calculer les longueurs, on utilise qu'une seule dimension. On utilise donc les m, cm, km etc...

II Aire (Rappels)

<u>Définition</u>:

La surface d'une figure est la partie qui se trouve à l'intérieur de la figure. L'aire est la mesure de la surface.

Pour calculer l'aire de certaines figures particulières, il faut connaître les formules suivantes :

Carré	Rectangle	Disque	Triangle			
c #	L	* "	h			
$A = c \times c = c^2$	$A = L \times l$	$A = \pi \times r^2$	$A = \frac{b \times h}{2}$			
Losange	Parllélogramme	Trapèze	Sphère			
d d	A B	D c A				
D 94+	D b C	с в				

Conversion d'unités d'aire:

km²		hm²		dam²		n		dı	n²	C1	n ²	mm²	
							1	0	0	0	0		
	0,	0	0	2	1								

$$1 m^2 = 10 000 cm^2$$

$$1 m^2 = 10 \ 000 \ cm^2$$
 $21 \ dam^2 = 0,0021 \ km^2$

Remarques:

- Pour calculer les aires, on utilise 2 dimensions, donc on utilise les m², cm², km² etc...
- Dans le tableau de conversion des unités d'aire, chaque unité est divisée en 2 sous-colonnes.

III Volume

Définition:

Le volume est l'espace qui se trouve à l'intérieur d'un solide.

Pour calculer le volume de certaines figures particulières, il faut connaître les formules suivantes :

Cube	Pavé droit	Prisme droit	Cylindre de révolution
	h		h
$V = c \times c \times c$	$V = L \times l \times h$	$V = Aire de la base \times h$	$V = Aire de la base \times h$
Cône	Pyramide	Boule	
H	Н		
$V = \frac{Aire\ de\ la\ base \times h}{3}$	$V = \frac{Aire\ de\ la\ base \times h}{3}$	$V = \frac{4}{3} \times \pi \times r^3$	

Conversion d'unités de volume :

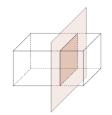
Les volumes peuvent s'exprimer dans 2 types d'unités différentes qu'on peut regrouper dans un seul et même tableau :

km ³		hm ³		dam ³		m ³				dm ³		cm ³			mm ³					
ĺ											kl	hl	dal	L	dl	cl	ml			
											1	0	0	0	0	0	0			
		0,	0	0	0	2	1	5												

Remarques:

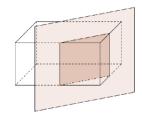
- Pour calculer les volumes, on utilise 3 dimensions, donc on utilise les m³, cm³, km³ etc...
- Dans le tableau de conversion des unités de volume, chaque unité est divisée en 3 souscolonnes.

IV Sections de solides par un plan


Définition :

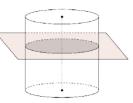
La section d'un solide par un plan est l'ensemble des points d'intersection du solide et du plan.

1- Avec un pavé droit

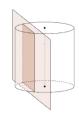

Le plan est parallèle à une face

La section est un rectangle

Le plan est parallèle à une arête

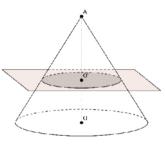

La section est un rectangle

2- Avec un cylindre

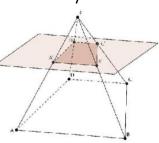

Le plan est parallèle à la base

La section est un **cercle** de même rayon que la base.

Le plan est parallèle à l'axe du cylindre

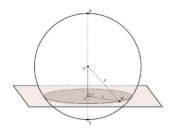

La section est un rectangle

3- Avec un cône ou une pyramide

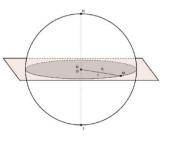

Le plan est parallèle à la base

La section est la même figure géométrique que la base mais réduite.

Le plan est parallèle à l'axe du cylindre


La section est la même figure géométrique que la base mais réduite.

4- Avec une sphère


Le plan coupe la sphère

La section est un cercle

Le plan coupe la sphère en passant par le centre

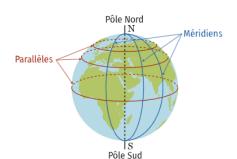
La section est un **grand** cercle

V Agrandissement et réduction

Propriétés:

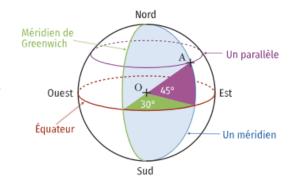
Pour un agrandissement ou une réduction de rapport k,

- les longueurs sont multipliées par k
- les aires sont multipliées par k^2
- les volumes sont multipliés par k^3


 $\underline{\text{Exemple}}$: Un verre de forme conique peut contenir au maximum $50\ cL$. On le remplit à moitié plein en hauteur.

Le rapport de réduction k est donc : $k = \frac{1}{2} = 0.5$

Le volume de liquide versé sera donc égal à : $V = 50 \times 0.5^3 = 6.25 \ cL$



V La sphère terrestre

La surface de la Terre peut être assimilée à une sphère de rayon égal à environ $6\,371\,km$. On représente le pôle Nord et le pôle Sud par deux points N et S diamétralement opposés.

Les parallèles et les méridiens permettent de connaître respectivement la latitude et la longitude d'un point situé à la surface de la Terre. Par exemple, e point A se situe sur le 45e parallèle Nord et le 30e méridien Est donc les coordonnées géographiques de ce point sont 45° Nord et 30° Est.

