Périmètre / Aire / Volume

Dans l'ensemble de ce chapitre, on utilisera les abréviations suivantes :

• Pour le carré : $c = c\hat{0}t\hat{e}$

• Pour le rectangle : L = Longueur et l = largeur

• Pour le triangle : b = base et h = hauteur

• Pour le cercle : r = rayon, d = diamètre et π est le nombre pi

I Périmètre

Définition :

Le périmètre d'une figure est la longueur que l'on parcourt lorsqu'on fait le tour de la figure.

<u>Méthode</u>: Pour calculer le périmètre d'une figure quelconque, il suffit donc d'additionner les longueurs des côtés de cette figure.

Pour certaines figures particulières, il faut connaître les formules suivantes :

Rectangle	Carré	Losange	Cercle
	# #	c t	r
$P = L + L + l + l$ ou $P = 2 \times (L + l)$	$P = c + c + c + c$ ou $P = 4 \times c$	$P = c + c + c + c$ ou $P = 4 \times c$	$P = \pi \times d$ ou $P = 2 \times \pi \times r$

Conversion de longueur:

km	hm	dam	m	dm	cm	mm
			1	0	0	
0,	0	1	0			
			0,	2	3,	7

Exemples: 1 m = 100 cm / 10 m = 0,01 km / 23,7 cm = 0,237 m

Remarque: Pour calculer les longueurs, on utilise qu'une seule dimension. On utilise donc les m, cm, kmetc...

Application: Exercice 1

II Aire

<u>Définition</u>:

La surface d'une figure est la partie qui se trouve à l'intérieur de la figure. L'aire est la mesure de la surface.

Pour calculer l'aire de certaines figures particulières, il faut connaître les formules suivantes :

Carré	Rectangle	Disque	Triangle
		* "	h b
$A = c \times c = c^2$	$A = L \times l$	$A = \pi \times r \times r$	$A = \frac{b \times h}{2}$

Conversion d'unités d'aire :

km²		hm²		dam²		n	n^2	dı	m²	C1	n^2	mm²	
							1	0	0	0	0		
	0,	0	0	2	1								

$$1 m^2 = 10 000 cm^2$$

$$1 m^2 = 10 \ 000 \ cm^2$$
 $21 \ dam^2 = 0,0021 \ km^2$

Remarques:

- Pour calculer les aires, on utilise 2 dimensions, donc on utilise les m², cm², km² etc...
- Dans le tableau de conversion des unités d'aire, chaque unité est divisée en 2 sous-colonnes.

Application: Exercice 2

III Volume

Définition:

Le volume est l'espace qui se trouve à l'intérieur d'un solide.

Il existe différents solides :

Le cube

La pyramide

Le pavé droit

Le cône

Le prisme droit

Le cylindre

La boule

Pour calculer le volume de certaines figures particulières, il faut connaître les formules suivantes :

Cube	Pavé droit
$V = c \times c \times c$	$V = L \times l \times h$

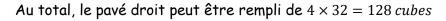
Conversion d'unités de volume :

Les volumes peuvent s'exprimer dans 2 types d'unités différentes qu'on peut regrouper dans un seul et même tableau:

km ³		hm ³		dam ³		m^3		dm ³			cm ³			mm ³						
											kl	hl	dal	L	dl	cl	ml			
											1	0	0	0	0	0	0			
		0,	0	0	0	2	1	5												

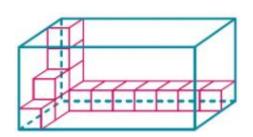
$$1 m^3 = 1 000 000 cm^3$$

$$215 \; dam^3 = 0,000 \; 215 \; km^3$$


- Pour calculer les volumes, on utilise 3 dimensions, donc on utilise les m³, cm³, km³ etc...
- Dans le tableau de conversion des unités de volume, chaque unité est divisée en 3 souscolonnes.

Remarque : Pour calculer le volume d'un solide, on peut également procéder à un assemblage de cubes de volume $1\ cm^3$

Dans la figure ci-contre, on peut aligner 8 cubes sur la longueur, 4 sur la largeur et 4 sur la hauteur.


Il y a aura donc au premier étage $8 \times 4 = 32$ cubes

On compte 4 étages en tout sachant que chaque étage est composé de 32 cubes.

Puisque chaque cube a pour volume $1\,cm^3$, le pavé droit a pour volume $128\,cm^3$

Application: Exercice 3

